
The Design Recipe using Classes

CS 5010 Program Design Paradigms
"Bootcamp"
Lesson 9.6

1
© Mitchell Wand, 2012-2017
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/


Note to the reader

• This PPT presentation is based on an earlier 
presentation that targeted the Racket object system.

• I’ve gone through Professor Clinger’s HTML pages and
imported the material back to PowerPoint, which some 
readers may find easier to use.

• There are a few slides with examples that were too
difficult to turn from Racket into Java.  Those are 
marked with bright yellow badges, and the filename for 
the corresponding page in the HTML (which you can 
wget or pull from github).

• Sorry about that... 

2



Goals of this lesson

• See how the design recipe and its deliverables 
should appear in an object-oriented system

• Note:  this is about OUR coding standards.  
Your workplace may have different standards.

3



Let's review the Design Recipe

4

The Function Design Recipe
1. Data Design
2. Contract and Purpose Statement
3. Examples and Tests
4. Design Strategy
5. Function Definition
6. Program Review



In an OO system, the steps are a little 
different, but they are all there

The Object-Oriented Design Recipe
Step Description
1. Interface Design Identify the kinds of things in your system and 

the messages they need to respond to.  For 
each method in an interface, write a contract 
and purpose statement.

2. Class Design Identify the kinds of things that may be behind 
each interface.  For each class, give a purpose 
statement.  For each field of a class, give an 
interpretation.

3. Method Design For each method, copy down the contract and 
purpose statement from the interface.  
Specialize the purpose statement to specify 
how the purpose is fulfilled for this class. 
Include examples as needed.

4. Unit Tests For each class, write tests that exercise every 
method

5. Program Review Same as before 5



Some differences
• "Design Strategy" has been dropped as a separate step, but you 

should still describe a design strategy if you think it would help 
readers to understand your code. Most of the time, your methods 
will be so simple you probably won't need to describe a design 
strategy.

• "Halting Measure" has been dropped as a deliverable, but you 
should still describe a halting measure for methods that might be 
involved in a recursion, unless the halting measure is obvious.

• "Contract and Purpose Statement" is now part of the "Interface 
Design" and "Class Design" steps.

• Unit tests are shown as the fourth step, after method definitions, 
but it is still a good idea to write at least some tests for each 
method after you write the contracts for the method and before 
you actually define the method.

6



Step 1:  Interface Design

• What kinds of things will exist in your system?
• What  messages will they need to respond to?
• List the messages (methods) in each interface
• Write a purpose statement for the interface
• For each method in the interface, write a contract 

and purpose statement.
• Write the contracts in terms of data types and 

interfaces (never classes).
• This is similar to the wishlist in the functional 

model.

7



Example 1: StupidRobot
// A StupidRobot is an object of any class that implements StupidRobot

//
// Interpretation:  A StupidRobot represents a robot moving along
//     a horizontal line starting at position 0.

interface StupidRobot {

// a new StupidRobot is required to start at position 0.

// RETURNS: a robot just like this one, moved one position
// to the right.

StupidRobot moveRight ();

// RETURNS: the current x-position of this robot

int getPos ();
}



Example 2: Widget
// Every object that lives in the world must implement the
// Widget interface.

interface Widget {

// RETURNS: the state of this object that should follow
//     the next tick

Widget afterTick ();

// GIVEN: coordinates of a location
// RETURNS: the state of this object that should follow
//     the specified mouse event at the given location

Widget afterButtonDown (int mx, int my);
Widget afterButtonUp (int mx, int my);
Widget afterDrag (int mx, int my);

// GIVEN: a key event
// RETURNS: the state of this object that should follow
//     the given key event

Widget afterKeyEvent (KeyEvent ke);

// GIVEN: a scene
// RETURNS: a scene like the given one, but with this
//     object painted on it

Scene addToScene (Scene sc);
}

9

Another way to write a 
purpose statement for an 

interface



Step 2: Class Design

• For each interface, consider the different kinds of 
objects that will implement this interface.  Each 
kind becomes a class.

• For each class, include a purpose statement that 
says what information is represented by objects 
of that class.

• For each class, give a constructor  template 
showing how to build an object of that class.

• Each field should have an interpretation, just as 
every field in a struct has an interpretation.

10



Example
// Constructor template for Bomb:
//     new Bomb(x, y)
// Interpretation:
//     x and y are the x and y coordinates for the center of this bomb

class Bomb implements Widget {

int x;                // x coordinate for this bomb's center
int y;                // y coordinate for this bomb's center

// image for displaying the bomb
// (declared static to avoid creating a separate image
// for every bomb we create)

static Image BOMB_IMG = Image.circle (10, "solid", "red");

static int SPEED = 8; // the bomb's speed, in pixels/tick

Bomb (int x, int y) {
this.x = x;
this.y = y;

}

...
}

11



What happened to the Observer 
Template?

• An interface is implicitly itemization data
• Each class that implements the interface is like an 

alternative of the itemization data.
• The object system does all the cond's for you.
• All that's left for you to do is to write the right-

hand side of each cond-line.
– When referring to the fields of this object, you can use 

fields instead of selectors.
– So there's no need for a separate  observer template. 

(Yay!)  

12



Coding Standards, Part 1
• A public method is a method whose definition begins with public.

– If a method is listed in an interface, its definition must be public. (The Java 
compiler enforces this.)

– If a method overrides a method inherited from Object, its definition must be 
public. (The Java compiler enforces this.)

– A static method (such as main) may be public.
• Every public method of the class MUST

– be listed in an interface the class implements, or
– override a method inherited from Object, or
– be a static method (such as main).

• Your class may also define non-public help methods. If a help method is 
called only from within the class, then it should be declared private.

• Your non-public methods should come after all of the public methods.
• You must not declare anything to be protected.

13



What happened to protected?

• In Java, declaring something to be protected 
makes it less protected, so programmers who 
are new to Java seldom use that keyword 
correctly. Java's protected keyword does have 
a few legitimate uses, but those uses are 
beyond the scope of this course.

14



Coding Standards, Part 2
• Interface and class names begin with a capital letter. 

Instead of using a hyphen to separate words in the name of 
a type or class, use Camel Case, as in StupidRobot.

• Variable and method names begin with a lower-case letter. 
Instead of using a hyphen to separate words in a variable or 
method name, use Camel Case: addToScene instead of 
add-to-scene.

• Constant names are entirely in upper case, using 
underscores instead of hyphens to separate words in a 
constant's name: BOMB_IMAGE instead of BOMB-IMAGE.
– In Java, the definition of a constant begins with static final.

15



Coding Standards Illustrated
;; A Foo is an object of any 
class that implements Foo<%>
;; Module such-and-so expects to 
work with a list of Foo’s.

(define Foo<%>
(interface ()

; -> Integer
; purpose statement 

omitted...
m1

; Bar -> Foo
; purpose statement 

omitted...
add-bar))

;; Constructor Template for Class1%:
;; (new Class1% [a Int][b Bool][c Foo])
;; Interp: an object of Class1% represents a ....

(define Class1%
(class* object% (Foo<%>)

(init-field a b c) 
;; interpretations omitted...

(field [LOCAL-CONSTANT ...])
;; interpretation omitted

(super-new)

; m1 : -> Integer
; purpose statement omitted...
(define/public (m1) ...)

; add-bar : Bar -> Foo
(define/public (add-bar b) ...)

(define/public (method-not-in-interface ...) ...)

(define (function1 ...) a b c this ...)
(define (function2 ...) a b c this ...)

;; for-test:... methods don't need to be 
;; in the interface

(define/public (for-test:test-fcn1 ...) ...)

))

16

Constants used only 
in one class should 

be fields.

No methods except those 
listed in the interface

If you think you need a private 
method, use a function instead.  
Functions can refer to fields and 

to this. These functions will not be 
accessible outside the class

Exception: methods named for-
test:... need not be in the 

interface, but they may only be 
used for testing.

Data Definitions 
go with 

Interfaces

Classes have 
Constructor 

Templates and 
Interpretations

See ooCodingStandards3.html



Step 3: Method Design
• Each method definition should have a contract that is the same as 

the contract in the interface. (In Java, the compiler enforces this.)
• A method should have a purpose statement if that would be helpful 

to a reader. A public method's purpose statement may specialize 
the purpose statement given in an interface by adding details that 
explain how that purpose is achieved in this particular class.

• Methods should have examples as needed to clarify the purpose 
statement.

• Each method should have tests associated with it.
• A method should have a design strategy if that would help readers 

to understand its definition.
• A recursive method should have a halting measure if that would 

help readers to understand why it terminates.

17

Remember,  a strategy is a 
tweet-sized description of how 

your function works



Contracts and Purpose Statements in a 
Class Definition

(define Bomb%
(class* object% (Widget<%>)

...   
;; after-tick : -> Widget
;; RETURNS: A bomb like this one, but as it should be after a tick
;; DETAILS: the bomb moves vertically by BOMB-SPEED
(define/public (after-tick)

(new Bomb% [x x][y (+ y BOMB-SPEED)]))

18

Since Bomb%  implements the Widget<%> 
interface, the value of (after-tick) is a 

Widget.  So after-tick satisfies its contract. 

Here’s an example of a refined 
purpose statement

This one is so simple it 
doesn’t need any 

examples.

See methodDesign2.html



Examples and Tests

• Examples and tests will generally be different.
• Put examples with the method.
• Phrase examples in terms of information (not 

data) whenever possible.
• Use meaningful names, etc., just as before.

19



Step 4: Unit Tests
• Your programming language, testing framework, and 

organizational standards will influence where you put your 
unit tests.

• In Java, you can put your unit tests for a class at the end of 
the class, following the non-public help methods, or you 
can put them in a separate class within the same file or in a 
separate file.

• Regardless of where you put unit your tests for a class, it is 
convenient to define a public static main method that runs 
all of the unit tests for that one class independently of the 
unit tests for other classes. That main method can then be 
called by the main method that runs all of the tests for your 
entire program.

20



Step 4: Unit Tests, part 2
• We still want 100% test coverage.
• Test observable behavior, as in the previous lesson.
• Don't assume the equals method can be used to compare objects.

– The next module will discuss the equals method in more detail. We are talking 
about it here to help you avoid mistakes we often see in unit tests.

• In Java, the equals method might test all and only the observable behavior 
of objects it is comparing. If so, you can use it to compare objects. 
Sometimes, however, the equals method defines some notion of equality 
that does not correspond to identity of observable behavior.

• In Java, all objects have an equals method. and x.equals(x) is true, so a 
false value for x.equals(y) counts as an observable difference between x
and y. On the other hand, a true value for x.equals(y) does not necessarily 
mean there are no observable differences between x and y. The behavior 
of the equals method becomes even harder to relate to observable 
behavior when the objects being compared are mutable: x.equals(y) may 
be true at one moment and false a moment later.

21



What happened to the strategy?

• We no longer require you to state a design 
strategy for every function and method.

• Early in the course, the design strategies you 
stated helped us to understand what you were 
trying to do even if your definition was 
completely wrong. As your programming skills 
have improved, that should happen less often 
now.

• You should still state a design strategy if you think 
it would help readers to understand your 
definition.

22



The real OO Design Strategies are the 
Patterns

• In OO world, the important design strategies 
are at the class level.

• Examples:
– composite pattern (eg, composite shapes)
– functional visitor pattern
– MapReduce pattern
– static factory method pattern
– strategy pattern (eg, next week’s Fmap example)

23



Remember:

• The design recipe is a process, not just a list of 
deliverables.

24



Properties of a good OO design
• One bundle of operations = one interface

– If the interface consists of two kinds of things, working on 
disjoint pieces of data, consider splitting it.

• One structure = one class
• Keep the interface as small as possible
• Keep the operations near the data
• Keep values local whenever possible
• All the other criteria of a good data design still hold

– need good contracts, purpose statements, and invariants
– If not every combination of values is meaningful, write an 

invariant (precondition) to document this.

25

This is not a course in OO 
Design, but we can write 

down some general 
principles.  If you stray too 
far from these, that is an 
indication of a bad design



• Same as before, plus one more

Step 6: Program Review

26

The Program Review Recipe

1. Do all the tests pass?
2. Are the contracts accurate?
3. Are the purpose statements and interpretations clear 
and accurate?
4. Are there ugly pieces of code that should be broken out 
into their own functions?
5. Are there pieces of code that are duplicated (or almost 
duplicated) and should be made into independent 
functions?
6. Does your design follow the Principles of a Good OO 
Design (on the preceding slide)?



Summary

• The Design Recipe is still there, but has been 
adapted to the object-oriented paradigm.

• The deliverables are in different places
• You should be able to follow the OO design 

recipe, putting the deliverables where they 
should go in your object-oriented programs.

27



Next Steps

• Study the files in the Examples folder.  Did we 
get all the deliverables in the right places?

• If you have questions about this lesson, ask 
them on the Discussion Board.

28


	The Design Recipe using Classes
	Note to the reader
	Goals of this lesson
	Let's review the Design Recipe
	In an OO system, the steps are a little different, but they are all there
	Some differences
	Step 1:  Interface Design
	Example 1: StupidRobot
	Example 2: Widget
	Step 2: Class Design
	Example
	What happened to the Observer Template?
	Coding Standards, Part 1
	What happened to protected?
	Coding Standards, Part 2
	Coding Standards Illustrated
	Step 3: Method Design
	Contracts and Purpose Statements in a Class Definition
	Examples and Tests
	Step 4: Unit Tests
	Step 4: Unit Tests, part 2
	What happened to the strategy?
	The real OO Design Strategies are the Patterns
	Remember:
	Properties of a good OO design
	Step 6: Program Review
	Summary
	Next Steps

